Em matemática, aritmética modular (chamada também de aritmética do relógio) é um sistema de aritmética para inteiros, onde os números "retrocedem" quando atingem um certo valor, o módulo. O matemático suíço Euler foi o pioneiro na abordagem de congruência por volta de 1750, quando ele explicitamente introduziu a ideia de congruência módulo um número natural N. A abordagem moderna da aritmética modular foi desenvolvida por Carl Friedrich Gauss em seu livro Disquisitiones Arithmeticae, publicado em 1801.
Um uso familiar da aritmética modular é no relógio de ponteiro, no qual o dia é divido em dois períodos de 12 horas cada. Se são 7:00 agora, então 8 horas depois serão 3:00. A adição usual sugere que o tempo futuro deveria ser 7 + 8 = 15, mas o relógio "retrocede" a cada 12 horas. Da mesma forma, se o relógio começa em 12:00(meio-dia) e 21 horas passam, então a hora será 9:00 do dia seguinte, em vez de 33:00. Como o número de horas começa de novo depois que atinge 12, esta aritmética é chamada aritmética módulo 12. Em termos da definição abaixo, 15 é congruente com 3 módulo 12, então "15:00" em um relógio de 24 horas é exibido "3:00 "em um relógio de 12 horas.
A noção de aritmética modular está relacionada com a de resto da divisão. A operação de achar o resto é algumas vezes chamada de operação módulo, nesse contexto escrevemos, por exemplo, 2 = 14 (mod 12). A diferença está no uso da congruência, indicado por "≡", e da igualdade indicado por "=". Igualdade implica especificamente o "resíduo comum", o menor inteiro não negativo membro de uma classe de equivalência. Quando estamos trabalhando com aritmética modular, cada classe de equivalência é geralmente representada pelo seu resíduo comum, por exemplo 38 ≡ 2 (mod 12), que pode ser encontrado usando divisão longa. Segue disso que enquanto é correto dizer 38 ≡ 14 (mod 12) e 2 ≡ 14 (mod 12), é incorreto dizer 38 = 14 (mod 12) (com "=" no lugar de "≡").
O DNA é encontrado principalmente nos cromossomos do interior do núcleo celular e nas mitocôndrias. Portanto, é identificado em todas as formas de vida do planeta, com exceção de alguns vírus.
Os genes são unidades de informação hereditária que formam os cromossomos. Nesse sentido, é possível dizer que o gene nada mais é do que uma sequência específica do DNA que contém as instruções necessárias para a síntese de uma proteína ou molécula de RNA.
Ou seja, o gene é a unidade fundamental da hereditariedade, pois eles são os responsáveis por determinar tanto as características próprias da espécie humana, quanto as características próprias de cada indivíduo.
É importante salientar que todas as células de um corpo possuem os mesmos genes. Entretanto, em algumas células, um tipo de gene é ativado e outro é desativado, garantindo, assim, a diferenciação das células. Além disso, em alguns casos, o gene fica ativado a todo o momento, pois são fundamentais para a realização de atividades básicas da célula.
Nesse sentido, os genes especificam as sequências de aminoácidos que atuam na estrutura e nas funções metabólicas das células e, consequentemente, no funcionamento de todo o organismo.
As diferentes sequências de DNA formam os cromossomos. O ser humano possui 46 cromossomos: 23 recebidos da mãe e 23 do pai. Nesse sentido, cada par de cromossomos é composto de inúmeros genes.
Dos 23 pares de cromossomos, 22 são considerados autossômicos e dois cromossomos são sexuais, os quais estão relacionados com a determinação do sexo masculino e feminino. Desta forma, homens apresentam cromossomos sexuais XY, enquanto as mulheres, XX.
O Genoma é toda a informação hereditária codificada no DNA de um organismo ou no RNA, no caso dos vírus. Nesse sentido, é o conjunto de todos os genes de uma determinada espécie.
O sequenciamento de DNA ou genoma é a técnica usada para determinar em que ordem as bases nitrogenadas (Adenina, Timina, Citosina, Guanina) se encontram no DNA.
Desta forma, sequenciar um genoma significa determinar a ordem em que as informações, ou seja, os genes, estão colocados e, nesse sentido, permite obter dados da linha evolutiva dos organismos. Portanto, o genoma pode trazer novos métodos para diagnosticar doenças ou formular medicamentos e vacinas.